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The semi-empirical ligand field is a perturbation operator whose consequences are taken to first 
order using a basis set of l functions. Since the basis spans an irreducible representation of the 3-dimen- 
sional rotation-inversion group R3~ it is useful to express the operator as a sum of components of 
irreducible tensor operators with respect to this group. If Ra~ is reduced with respect to the molecular 
subgroup the electronic factor of each term in the sum must be totally symmetrical within this group. 
This choice of operator leads to the crystal field parameterization without implying an electrostatic 
model. Alternatively a shift operator within I space may be chosen as the essential part of the perturba- 
tion operator. This leads to the ligand field parameterization. Between the two parameterizations 
there exists a one to one relationship, whose coefficients are proportional to 3l symbols. This relation- 
ship is given together with a brief discussion of the reasons for the proposed parameterizations. 
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1. Introduction 

The te rm l igand field leads conceptua l ly  to a mode l  in which the role of the 
l igands is represented  by a field i.e. a mode l  in which the wave-funct ions  assoc ia ted  
with the l igands do  no t  expl ici t ly  occur. This is not  in d i sagreement  with Orgel ' s  
or iginal  p r o p o s a l  [1] of using the name  l igand field model ,  when conceptua l ly  
it goes beyond  the e lec t ros ta t ic  mode l  and  includes such ideas as a-  and  ~-bonding .  
The reason for the lack of  d isagreement ,  which is bur ied  in the pr inciple  of  the 
p e r t u r b a t i o n  m e t h o d  itself, is tha t  the functions,  with respect  to order,  are  one 
step beh ind  their  co r r e spond ing  energies. F o r  the pa r t i cu la r  p r o b l e m  discussed 
here, d funct ions may,  for example ,  be the zero order  functions which are used 
to calculate  the first o rde r  energies caused, at least par t ia l ly ,  by m e t a M i g a n d  
b o n d i n g  [-2, 3]. 

W h e n  relat ive energies within a par t ia l ly  filled 1 shell are under  cons ide ra t ion  
a semi-empir ica l  mode l  using a basis set of 1 orb i ta l s  is usual ly  employed .  This  
mode l  will be reana lyzed  in the present  paper  in terms of  two symmet ry  
pa rame te r i za t ions  which are l inear ly  re la ted  to each other.  I t  will be discussed 
here wi thou t  the a s sumpt ion  of  the add i t iv i ty  of  single l igand p e r t u r b a t i o n  
cont r ibut ions .  The  discuss ion will be assoc ia ted  with an analysis  of  the form of  the 
ope ra to r s  represent ing  the l igand field i.e. an ope ra to r  equivalent  scheme [4]. 

* Dedicated to Hermann Hartmann who revived Bethe's crystal field model and was the first 
to realize its general applicability to describe d-d transitions. 



238 C.E. Schaffer 

2. Central Ion Functions and Projection Operators 

Let [cdt) be a real central ion function, normalized to unity. I is the azimuthal 
quantum number and t the particular component function within the set [M} 
containing (2l + 1) orthogonal functions whose further specification is given by c~. 
The component functions will sometimes be denoted by u, v or w instead of t. 
The expression lelu) (~Ivl is a projection operator [5, Eq. (35)] which, for 
example, acts on a given function to its right by first multiplying this function by 
(ely[ and integrating over configuration space to give the fractional content - 
a number - of (elvF in the given function, and then multiplying this number by 
I~lu). In short, the projection operator takes the content of the normalized 
Ielv) in the given function and transforms it into Icdu). Such a projection operator 
is a shift operator within I space and for u = v it is an idempotent which projects 
the content of [elu) out of the given function. 

If the functions Ilt) are written as solid harmonics in x, y, and z the operators 
]lu) (Iv] may be written on the form i ~z z 9J~ugJl v where 9J~u is a solid harmonic, 
normalized [5, Eq. (9)] to 4n/1 �9 3 . . . .  (21 + 1), and 9Jl~ is the differential operator 
obtained by the substitution q--*O/Oq (q = x, y, z) in 9J~. The direct product 
[M} x {eli represents the set of (21+ 1) 2 projection operators which span the 
(2/+ 1) 2 dimensional reducible representation of the 3-dimensional rotation 
group which may be reduced into the direct sum 

D (~ x D  (~ = D  (~ + D  (1) + D  (2) + " -  + D  (2 / -  1) + D  (2/) (1) 

where the terms with even superindices form the symmetrical part of the direct 
product [6, Eq. (28)]. D (2) is the irreducible representation of dimension five 
spanned by the set [ed}. The sum IE t [eIt) (c~It[ spans D (~ and is the resolution 
of the identity within I space [-5]. 

3. The Ligand Field Operators of the Most General Field Model, 
the Non-Additivity Model 

The non-additive ligand field operator can be written as 

V = ~ A~l=It)  (~lwl 
t ,W 

or, alternatively, 

(2) 

~,~ 
where Atw = Aw~ and Atw = A-~ are energy quantities transforming in such a way 
that V transforms as a scalar. The bar in Eq. (3) indicates that the number of 
parameters have been reduced by one relative to Eq. (2) by introducing the 
condition 

= A, = 0 (4) 
t 

where Eq. (4) expresses the barycenter or center of gravity rule. It is reasonable 
to require this rule be fulfilled because the semi-empirical ligand field model is 
only concerned with energy differences within the l shell The parameter At~ 
vanishes unless the operator [~It)(~lw[ contains terms which transform as the 



The Non-Additive Ligand Field 239 

totally symmetrical representation of the group G. The general matrix element 
has the form 

<~lulWl~Iv> = ~, A~w<~lul~It> <~lwl~lv> = A . v .  
t~w 

(5) 

We propose to call the parametrization associated with Eqs. (2)-(5) the liyand 
field parametrization. 

When the system has no symmetry the number of independent parameters 
of the symmetric energy matrix, corresponding to Eq. (1) is [7] 

[2/+ 1] + �89 [(2/+ 1) 2 - (2/+ 1)3 = (2/+ 1) (1 + 1). (6) 

There is an alternative way of enumerating the independent parameters and 
of parameterizing the ligand field in which the field is written as a sum of spherical 
irreducible tensor operators whose coefficients are energy quantities transforming 
also irreducibly so that V transforms as a scalar. 

or, alternatively, 

~ r  E k k ~q ttq (7) 
k,q 

keven 

V ~  Z k k ~q tlq (8) 
k,q 

k even, k > 0 

where German gothic letters are used for irreducible tensorial quantities. The 
operators of Eqs. (7) and (8) are equal to those of Eqs. (2) and (3) and llq k is the unit 
tensorial operator defined by its reduced elements [8, Eq. (67)] 

(al  II lIk II c~' l') = 8 (~ ' )  6(ll') fi(lkl') . (9) 

Where 6(lkl') expresses the triangular condition. In Eqs. (7) and (8) k must be 
even and maximally equal to (2/) in order that llq k shall span the symmetrical 
direct product of Eq. (1). The general matrix element ofV of Eq. (7) is 

<~lulVl~lv> = ~ <~lul ~qk uqkI~lv> 
k,q 

keven,O<k<< 21 

k,q q ~U q "" 
keven, O<_k<=21 

(lO) 

Again ~ vanishes unless Uq k contains totally symmetrical terms under G which 
here and in the following is assumed to be simply reducible [6]. 

are even 31 symbols corresponding to the Wigner 3j In Eq. (10) q 

symbols and derivable from these [8]. Each one may also be derived as an integral 
[6] and this may be done by an integration by differentiation procedure [9, p. 108]. 



240 C.E. Sch~ffer 

The general  express ion  for the even 31 s y m b o l  is 

= 2z2[(I 2 + 13 - 11)! (13 + 11 - 12)! (11 4- 12 - 13)! 

�9 (11 + 12 + I3 + 1)!]  - {  [(12 + 13 - -  11)/2]! F(l I + 12 - -  13)/2] ! (11) 

Where ~ is a solid harmonic expressed in the coordinates x, y, and z and 
normalized to 4n/(2l + 1) and ~ the corresponding differential operator obtained 
by the substitution q-~O/Oq (q= x, y, z) into ~ .  In Eq. (11) 12 appears to play a 
unique role. However, the l's may be permuted in this formula. 

At this stage we put in a remark which only has a peripheral relationship to the 
rest of this paper, but which nevertheless is necessary for understanding the 
discussion around Eq. (19). The 31 symbol of Eq. (11) may be called a 3F symbol 
of the 3-dimensional rotation group R 3 since ll, 12, and 13 is a naming of three 
irreducible representations of R 3. 3F symbols have also been defined for the point 
groups [10] and redefined [6] with phases fixed by simple conventions relating 
them to corresponding 31 symbols through a lemma by Racah. For the pure 
rotation groups this phase fixation of the 3F symbols was established by defining 
standard spherical harmonic basis functions for the point groups using a "basic 
rule" [6, p. 210] and letting these standard functions define the sign of the 3F 
symbol through Eq. (11) and using a positive constant of renormalization to 
fulfill the condition 

(Fa Fb Fc]2=l  " (12) 

This is the same as chosing the Racah lemma constant to be positive for the 
standard functions [6, p. 232]. 

The choice of standard functions thus defines the sign of the 3F symbols. 
This necessitates a distinction [6, p. 234] between standard functions and func- 
tions transforming in the standard way, i.e. transforming by identically the same 
matrices, because if non-standard functions, which do transform standard, had 
been used to define the 3F symbols, the same absolute values would have arisen, 
but, as a consequence of Racah's lemma, the signs would sometimes have been 
different. 

We propose to call the parameterization associated with the Eqs. (7)-(10) the 
crystal field parameterization without thereby implying the electrostatic model. 
When the system has no symmetry all the terms in the expansion of Eq. (7) are 
nonvanishing and the number of independent parameters is 

~,, (2k+ 1)=(21+ 1)(l+ 1) (13) 
keven, O<_k<_21 

i.e. the same number which results from counting the parameters in the ligand 
field parameterization of Eq. (6)�9 A linear relationship between the A.v parameters 
and the ~k parameters is obtained by equating Eqs. (5) and (t0) 

A.,, = Z e~ (14) 
k,q q 
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and the reverse relationship by multiplying with q' on either side of 

Eq. (14), and summing over u and v, using the orthogonality relations of the 31 
symbols [8, Eq. (19a)] 

2 A.v q, = 2 e q k Z  q, 
.,v k,q .,~ q 

1 
- 2 k ' + 1  e~: 

(15) 

or, changing back to unprimed indices 

u,v q 

Associated with each of the parameters there is in both parameterization schemes 
a ligand field operator. The operator corresponding to A~v is 

A~v[-l~lu) ((zlvl + I~Iv) (~lul] (17) 

and that corresponding to ~ is 

{~ll-I~ = e~ ~ ~ v} (~lvl . 08) 1/ TT u q  

4. Di scuss ion  

We have seen how the most general first order perturbation ligand field model, 
the non-additivity model, can be parameterized in two different ways. One of 
these may be said to be essentially founded upon the basis functions and called the 
ligand field parameterization and the other to be founded upon the perturbation 
operator and called the crystal field parameterization. There exists a one to one 
relationship between the two parameter sets and the coefficients in these relation- 
ships are proportional to the 31 symbols. It is parameters of the ligand field 
parameterization which are the chemically interesting ones because of their 
direct connection with the orbital energy concept of the model. The parameters 
of the crystal field parameterization may, however, when translated into the 
additivity model, reveal certain symmetry aspects of the model [11]. 

The two parameterization schemes and their relationships have been discussed 
previously for special examples [11] when the ligand field parameterization was 
called the orbital energy parameterization and the crystal field parameterization 
called the spherical harmonic parameterization. 

The two parameterization schemes have also been demonstrated for the 
additive ligand field [9, 11], in which case the ligand field parameterization for 
linearly ligating ligands is identical to the e~, e~, e~ parameterization of the Angular 
Overlap Model when this is taken as a semi-empirical model. 

The parameters ~ of the crystal field parameterization of Eq. (10) were 
written E~ in Ref. [-8] and called "reduced ligand field parameters" even though 
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they contain q. The reason for this choice of parameters rather than the reduced 
matrix elements of the molecular symmetry group G is rather trivial theoretically 
as can be seen by reference to the discussion around Eq. (t2). 

If the components of the irreducible representations of the 3-dimensional 
rotation-inversion group Rai are chosen so as to transform irreducibly in a 
standard way within the sub-group G, i.e. if R3i is reduced with respect to the 
group G, 11~ must transform as the unit representation F1 of G and the general 
matrix element of V [compare Eq. (10)] has the form 

[kclF171 

kcl Fx ~ 1 

kc~ r~ ~,~ ]~1 ~b 

-~- Z k k 
kclrl~l V L 1 aJ 

= A~coro~o)~r 6(rorb) 6(7o~b). 

In Eqs. (19) and (20) irreducible representations written in square parenthesis 
represent their own dimension, the c labels refer to the situation when the same 
irreducible representation F arises more than once within I or k, and the symbols 
~, l, and k have the same meanings as in Eq. (10). 

In Eq. (19) the Eq. (10) has first been used and the same conditions on k apply 
in the two equations. Then the Wigner-Eckart theorem for the group G has been 
used, resulting in the expression (Ic~F~ [[ k ~c,1"1 [[ICbFb) which by Eq. (t9) is a 
definition of the matrix element of the spherical irreducible unit operator reduced 
with respect to the components 7 of the irreducible representations F of the 
group G 1-6, p. 203]. We know from the discussion around the Eq. (12) that this 
does not depend on e. It may be expressed as 

II uc, r, II lc r 5 = (kc, rllcbrbllc.ra) (20) 

where the phase factor is plus one, because the 31 as well as the 3F symbols are 
even, and where ( k q F  1 lCbFbllC, Fa) is a Racah lemma constant [6, Eq. (61)]. 
When the components u, v, and q of Eq. (10) are chosen as 

u =c ,F ~ , ;  V=cbFbTb, and q=clF171 (22) 

then the parameter A(r176162 in the last expression of Eq. (19) 
is identical to A,~ of Eq. (5). 

In conclusion we note regarding Eq. (19) that the expression 

k k e ,r,(Ic  a II c,r, Iltc r 5 (23) 

which is the expression for a reduced matrix element within G, could equally well 
as ~ , r ,  ~, have been chosen as one of the independent ligand field parameters. 
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We have seen that our choice of ligand field parameters ~ in the crystal field 
parameterization is a matter of convenience rather than necessity. On the other 
hand it has advantages of which we shall mention two. 1) Symmetry adaptation 
of lit} is unnecessary which may be a useful freedom to have [12]. 2) 11~ may be 
symmetry adapted to a hierarchy of groups ordered according to decreasing 
symmetry. Thereby the barycenter rule may be made to apply at each stage 
[12-14-1 and, for example, such a concept as the cubic field becomes defined even 
in a tetragonal molecular system [12, 11]. 

Acknowledgement. The author is indebted to Sven Harnung for discussions and help, and for the 
collaboration (Ref. [6] and [8]) without which this paper could not have been written. 
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